Lecture: 3-10 Linear Approximation and Differentials

Linear Approximation

Basic idea:
$f(x) \approx$ tan line at $x=a$ for values of x "close" to a
thus the tangent line is a linear approximation of $f(x)$
slope $f^{\prime}(a)=m$ point $(a, f(a))$

$$
\begin{aligned}
& y-f(a)=f^{\prime}(a)(x-a) \\
& y=f^{\prime}(a)(x-a)+f(a) \\
& L(x)=f^{\prime}(a)(x-a)+f(a)
\end{aligned}
$$

Example 1: Find the linearization of $f(x)=\sqrt{x+3}$ at $a=1$ and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$
\begin{array}{rlrl}
f^{\prime}(x) & =1 / 2(x+3)^{-1 / 2} j f^{\prime}(1)=1 / 2 \sqrt{4}=1 / 4 & ; f(1)=\sqrt{4}=2 \\
L(x) & =1 / 4(x-1)+2 & \sqrt{3.98} & =\sqrt{0.98+3} \\
& =\frac{1}{4} x-\frac{1}{4}+\frac{8}{4} & & \approx L(0.98) \\
& =\frac{1}{4} x+\frac{7}{4} & & =\frac{1}{4}(0.98)+7 / 4=1.995 \\
& & & =1.05+3 \\
& & =2(1.05) \\
& & 2.0125
\end{array}
$$

Example 2: Physicists commonly use linear approximations to simplify a non-linear function. Find the linear approximation of $f(x)=\sin x$. at $\boldsymbol{a}=0$

Does this make sense?

$$
\begin{aligned}
& f^{\prime}(x)=\cos x ; f^{\prime}(0)=\cos 0=1 \\
& f(0)=0 \\
& L(x)=1(x-0)+0 \\
& L(x)=x
\end{aligned}
$$

thus $\sin x \approx x$ for x "close" to zero

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

Example 3: Use a linear approximation to estimate $\sqrt{99.8}$ in two different ways. Does your estimate differ?
(a) $f(x)=\sqrt{x}, a=100$

$$
\begin{aligned}
f^{\prime}(x) & =1 / 2 x^{-1 / 2} ; f^{\prime}(100)=1 / 20 \\
f(100) & =10 \\
L_{1}(x) & =1 / 20(x-100)+10 \\
& =1 / 20 x+5
\end{aligned}
$$

$$
\sqrt{99.8} \approx L_{1}(99.8)
$$

$$
=\frac{1}{20}(99.8)+5
$$

$$
=9.99
$$

(b) $f(x)=\sqrt{x+100}, a=0$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}(x+100)^{-1 / 2} ; f^{\prime}(0)=1 / 20 \\
& f(0)=10
\end{aligned}
$$

$$
L_{2}(x)=\frac{1}{20}(x-0)+10
$$

$$
=1 / 20 x+10
$$

$$
\sqrt{99.8}=\sqrt{-0.2+100}
$$

$$
\approx L_{2}(-0.2)
$$

$$
=1 / 20(-0.2)+10
$$

$$
=9.99
$$

Example 4: Find the linear approximation of $f(x)=e^{x} \cos x$ at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1.

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \cos x+e^{x}(-\sin x) ; f(0)=1 \\
f^{\prime}(0) & =1 \cdot 1+1(-0)=1 \\
L(x) & =1(x-0)+1 \\
& =x+1
\end{aligned}
$$

graph all
three curves seewhere the line falls between the upper t lower.
need

$$
\begin{aligned}
& -0.1<e^{x} \cos x-(x+1)<0.1 \\
& -0.1-e^{x} \cos x<-(x+1)<0.1-e^{x} \cos x \\
& -e^{x} \cos x+0.1>x+1>e^{x} \cos x-0.1
\end{aligned}
$$

True for $-0.75<x<0.6$

We want to estimate change in y or Δy.
note, the tangent line has slope $\frac{d u}{d x}=f^{\prime}(x)$

$$
\begin{aligned}
& \frac{\text { revel }}{\text { In }} \text { so } d y=f^{\prime}(x) d x \\
& J_{\text {at }}
\end{aligned}
$$

note that $\Delta y \approx d y$
and as $\Delta x \rightarrow 0, \Delta y \rightarrow d y$
Example 5: Compare the values of Δy and $d y$ if $y=f(x)=x^{3}+x^{2}-2 x+1$ and x changes
(a) from 2 to 2.10.

$$
\begin{aligned}
\Delta y & =f(2.10)-f(2) \\
& =\left((2.10)^{3}+(2.10)^{2}-2(2.10)+1\right)-\left(2^{3}+2^{2}-2(2)+1\right) \\
& =(1.471) \\
d y & =f^{\prime}(x) d x \\
& =\left(3 x^{2}+2 x-2\right) d x \\
d y & =\left(3\left(2^{2}\right)+2(2)-2\right)(0.1)=1.4
\end{aligned}
$$

(b) from 2 to 2.01.

$$
\begin{aligned}
\Delta y & =f(2.01)-f(2) \\
& =\left((2.01)^{3}+(2.01)^{2}-2(2.01)+1\right)-\left(2^{3}+2^{2}-2(2)+1\right) \\
& =0.140701 \\
d y & =\left(3\left(2^{2}\right)+2(2)-2\right)(0.01) \\
& =0.14
\end{aligned}
$$

(c) What happens to Δy and $d y$ as Δx decreases?

$$
\Delta y \rightarrow d y
$$

Example 6: Find the differential of the function.
(a) $y=\cos \pi x$

$$
d y=-\sin (\pi x) \cdot \frac{d}{d x} \pi x
$$

$$
d y=-\pi \sin (\pi x) d x
$$

(b) $y=\frac{1}{(1+2 r)^{4}}=(1+2 r)^{-4}$

$$
\begin{aligned}
& d y=-4(1+2 r)^{-5} \cdot \frac{d}{d r}(1+2 r) \\
& d y=-4(1+2 r)^{-5}(2) d r \\
& d y=\frac{-8}{(1+2 r)^{5}} d r
\end{aligned}
$$

Example 7: Find the differential $d y$ and evaluate $d y$ for the given values of x and $d x$.
(a) $y=x^{3}-6 x^{2}+5 x-7, x=-2, d x=0.1$

$$
\begin{aligned}
& d y=\left(3 x^{2}-12 x+5\right) d x \\
& d y=\left(3(-2)^{2}-12(-2)+5\right)(0.1) \\
& d y=4.1
\end{aligned}
$$

(b) $y=1 /(x+1), x=1, d x=-0.01$

$$
\begin{aligned}
& y=(x+1)^{-1} \\
& d y=-1(x+1)^{-2} d x \\
& d y=\frac{-1}{(x+1)^{2}} d x \\
& d y=\frac{-1}{(1+1)^{2}}(-0.01) \\
& d y=0.0025
\end{aligned}
$$

Example 8: The radius of a sphere was measured and found to be 21 cm with a possible error of at most 0.05 cm . What is the maximum error in using this value of the radius to compute the volume of the sphere?

$$
d v=4 \pi r^{2} d r
$$

$$
d V=4 \pi(21)^{2}(0.05)
$$

$$
d v=88.2 \pi \mathrm{~cm}^{3}
$$

Example 9: The radius of a circular disk is given at 24 cm with a maximum error in measurement of at most 0.2 cm.

$$
d r=0.2
$$

(a) Use differentials to estimate the maximum error in the calculated area of the disc. Does this error seem large?

$$
\begin{aligned}
& A=\pi r^{2} \\
& d A=2 \pi r d r \\
& d A=2 \pi(24)(0.2) \\
& \frac{d A}{d A}=9.6 \pi \mathrm{~cm}^{2}
\end{aligned}{ }^{1 \text { think it seems large }}
$$

(b) What is the relative error? What is the percent error? Does the error (still) seem large?

$$
=\frac{0.4}{24}
$$

$d \sigma$
$d v \approx 277.088 \mathrm{~cm}^{3}$.

